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Abstract: Recent reports of multivariate machine learning (ML) techniques have highlighted their
potential use to detect prognostic and diagnostic markers of pain. However, applications to date have
focussed on acute experimental nociceptive stimuli rather than clinically relevant pain states. These
reports have coincided with others describing the application of arterial spin labeling (ASL) to detect
changes in regional cerebral blood flow (rCBF) in patients with on-going clinical pain. We combined
these acquisition and analysis methodologies in a well-characterized postsurgical pain model. The
principal aims were (1) to assess the classification accuracy of rCBF indices acquired prior to and fol-
lowing surgical intervention and (2) to optimise the amount of data required to maintain accurate clas-
sification. Twenty male volunteers, requiring bilateral, lower jaw third molar extraction (TME),
underwent ASL examination prior to and following individual left and right TME, representing pre-
surgical and postsurgical states, respectively. Six ASL time points were acquired at each exam. Each
ASL image was preceded by visual analogue scale assessments of alertness and subjective pain experi-
ences. Using all data from all sessions, an independent Gaussian Process binary classifier successfully
discriminated postsurgical from presurgical states with 94.73% accuracy; over 80% accuracy could be
achieved using half of the data (equivalent to 15 min scan time). This work demonstrates the concept
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and feasibility of time-efficient, probabilistic prediction of clinically relevant pain at the individual
level. We discuss the potential of ML techniques to impact on the search for novel approaches to diag-
nosis, management, and treatment to complement conventional patient self-reporting. Hum Brain Mapp
36:633–642, 2015. VC 2014 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc.
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INTRODUCTION

Despite decades of effort and investment, effective pain
management remains an unmet need worldwide [Kupers
and Kehlet, 2006]. New therapies must be developed to
help bridge this gap [Woolf, 2010], but current clinical tri-
als continue to utilise self-report as their sole endpoint to
assess success. This reliance on self-report to record indi-
viduals’ pain experiences is understandable given the
absence of a known biological index of pain. Improving
pain phenotyping and developing more sensitive measure-
ment techniques should add value to self-report [Robinson
et al., 2013]. Ideally such new methods would also provide
robust, individualized predictions of treatment response
[Rosa and Seymour, 2014; Woodcock et al., 2007].

Neuroimaging has sought to address these aspirations
but there have been significant limitations in its applica-
tion to the study of on-going or “background” pain, often
a defining feature of clinical pain disorders [Kupers and
Kehlet, 2006]. On-going pain is difficult to measure using
conventional functional magnetic resonance imaging
(fMRI) methods, such as blood oxygen level-dependent
(BOLD) imaging [Downar et al., 2000; Legrain et al., 2011],
as this behavior cannot be broken up into blocks or inter-
rupted by rest. Positron Emission Tomography does not
suffer this limitation but is more expensive, less accessible,
and constrained by safety concerns regarding repeat-
administration of radioactive ligands as required in “cross-
over” studies. Resting-state fMRI offers promise but the
mechanisms underlying correlations between brain regions
during the pain experience remain poorly understood
[Napadow et al., 2010]. Another MRI-based technique,
arterial spin labeling (ASL), provides noninvasive, quanti-
tative indices of cerebral blood flow (CBF) with the sensi-
tivity to detect “tonic” states over the course of minutes

[Aguirre et al., 2002]; thus, ideally suitable for examining
persistent or on-going pain. Our own preliminary research
[Hodkinson et al., 2013; Howard et al., 2011] has docu-
mented the feasibility and reliability of the third molar
tooth extraction (TME) model to study on-going postsurgi-
cal pain using ASL. Pain intensity following TME has
been extensively evaluated and shown to produce
moderate-to-severe on-going pain between 3 and 5 hrs fol-
lowing surgery [Barden et al., 2004].

Recently (see [Rosa and Seymour, 2014] for a review), neu-
roimaging analyses have taken advantage of the richness of
information that is available within fMRI data to decode the
pain experience. Multivariate analyses acknowledge spatial
relatedness in whole-brain imaging datasets, offering greater
sensitivity than conventional mass-univariate methods to
detect spatially distributed effects [Norman et al., 2006]. Super-
vised “machine learning” (ML) pattern classifiers potentially
offer the desirable quality of predicting class membership of
new individuals, for example, whether a new patient is in
pain or might respond to treatment [Marquand et al., 2012].
Despite their impact in the field to date, ML techniques have
yet to have been applied to the critical challenges of on-going
clinical pain. Here, we address this issue directly, applying
Gaussian Process Classification (GPC) to a pre-existing clinical
ASL dataset [Howard et al., 2011]. GPC yields similar accuracy
to other ML techniques such as Support Vector Machines
[Marquand et al., 2010] but provides the advantage of proba-
bilistic predictions that can capture variability within clinical
populations. The two principal aims of this study were: (i) to
determine GPC accuracy in discriminating presurgical from
postsurgical states, following left and right TME; (ii) to under-
stand the temporal effects of acquiring multiple ASL scans on
this classification accuracy.

MATERIALS AND METHODS

Participants

Twenty right-handed, healthy, male volunteers aged 20–
34 (mean age 5 26.18 years) provided written, informed
consent to participate in the study. Female participants
were excluded due to possible variability induced by the
phase of the menstrual cycle on postsurgical pain [Teepker
et al., 2010]. All participants presented with bilateral recur-
rent pericoronitis and fulfilled NICE (2000) guidelines for
extraction of lower-jaw left and right third molars. The
study was approved by King’s College Hospital NHS
Research ethics committee (07/H0808/115).

Abbreviations

ASL Arterial Spin Labeling
fMRI Functional Magnetic Resonance Imaging
GP Gaussian Process
GPC Gaussian Process Classification
LOOCV Leave-one-out Cross Validation
ML Machine Learning
MPC Multivariate Pattern Classification
PET Positron Emission Tomography
rCBF Regional Cerebral Blood Flow
TME Third Molar Extraction
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Experimental Design

Participants visited on six separate occasions (S1–S6);
screening/familiarisation (S1), presurgical (S2), and post-
surgical sessions (S3) for the first extraction, presurgical
(S4) and postsurgical (S5) sessions for the second extrac-
tion, and a final follow-up session (S6). A minimum ten
day interval separated S3/S4 and S5/S6, assuring com-
plete recovery from each surgery. The order of left and
right tooth extraction was balanced and pseudorandom-
ized across the group. The study design is illustrated in
Figure 1a. Patients’ vitals were recorded before each ses-
sion (i.e., pulse rate and blood pressure), in addition to an
alcohol/drug-screen and a psychometric assessment (the
reader is directed to [Howard et al., 2011] for further detail
on design and psychometry). Analgesic medication
(1000 mg paracetamol and 400 mg ibuprofen) was avail-
able to participants immediately only following postsurgi-
cal scanning.

Imaging Procedure

Imaging was performed on a 3 Tesla Signa HDx
whole-body MR imaging system (General Electric) fitted
with an 8-channel, phased-array receive only head-coil.
High-resolution T1- and T2-weighted MR structural
sequences were acquired in Session 1 for radiological
assessment and image registration. In Sessions 2–6,
resting-state rCBF measurements were made using psue-
docontinuous ASL (ASL) [Dai et al., 2008], using a label-
ing duration of 500 ls, peak to peak gap of 1,500 ls and
a total labeling duration of 1.5 s. After a postlabeling lag
of 1.5 s, images were acquired using a 3D Fast Spin Echo
spiral readout sequence (8 shots, TE/TR 32/5500 ms.
ETL 5 64, 3 tag control pairs). Images were acquired over
a 18 3 24 3 18 cm field of view with a 48 3 64 3 60
matrix, reconstructed to a nominal spatial resolution of 1
3 1 3 3 mm. The imaging protocol was identical at each
session (S2–S6). Each of the 6 pCASL scans per session
took approximately 6 min 8 s, so the total MRI session
lasted approximately 40 min with no breaks. Patients
were required to lie still with their eyes open during
scanning.

Visual Analogue Scales

During MRI acquisition in Sessions 2–6, a computerized
visual analogue scale (VAS) recorded patient’s subjective
pain and alertness prior to the first ASL scan and then
immediately following each subsequent scan, leading to 7
total VAS measurements for alertness and subjective pain
per scanning session. The words “no pain”/“worst imagi-
nable pain” and “very sleepy”/“wide awake,” respec-
tively, were displayed as the left/right anchors, with
visual feedback projected onto a screen located at the
patient’s feet and visible via a mirror.

Image Preprocessing

Image analysis was carried out using a combination of tools
from FSL v4.1.6 (http://www.fmrib.ox.ac.uk/fsl/) and SPM8
(v4010) toolkits (http://www.fil.ion.ucl.ac.uk/spm/). For
each subject, all collected ASL images within and across ses-
sions were coregistered with each other and a mean image
generated [SPM]. The T2 weighted image was skull stripped
using a brain extraction tool [FSL-BET] and the resulting
brain-only image was coregistered with the average ASL
image and used as a mask to exclude extra-cerebral signal
[SPM-CO-REGISTER]. A nonlinear transformation was calcu-
lated between the mean ASL image and a custom ASL tem-
plate in the standardized, stereotaxic co-ordinates of the
Montreal Neurological Institute (MNI) [SPM-NORMALISE].
The raw images were then transformed to MNI space in one
interpolation step. The resulting images were smoothed with
an 8 mm full width at half maximum isotropic Gaussian ker-
nel. To account for the intersubject variability of global blood
perfusion values, all normalized, smoothed images were
scaled to have a median value of 1,000. This scaling was per-
formed to ensure that global differences in CBF values did not
confound later classification.

Behavioral Data Analysis

VAS scores of perceived pain and alertness were aver-
aged for each subject and session. Between-session differ-
ences in pain and alertness were investigated using one-

Figure 1.

Study design illustrating the order of visits for each participant (a).

The three main investigations performed in this study as well as the

datasets used for each are also indicated (b). Note that, although the

order of surgery was pseudorandomized, in this figure Session 3 indi-

cates the session acquired after left-sided third molar extraction

(TME), Session 5 right-sided TME. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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way repeated measures ANOVA, with session (Left Post-
surgery, Right Postsurgery, and Presurgery) used as the
within-subjects factor. Post-hoc t-tests were used to exam-
ine differences between individual sessions. Statistical
analyses were performed using SPSS v18 (http://www.
spss.com) and Microsoft Excel for Macintosh 2011 (http://
www.microsoft.com/mac).

Gaussian Process Classification

Independent binary GPCs [Rasmussen et al., 2006] were
used to discriminate postsurgical from presurgical states,
based on the whole-brain ASL images. Three analyses
were performed (see Fig. 1b for null hypotheses):

i. discrimination of the postsurgical from presurgical
state. To maximise sensitivity in this analysis, we
used all presurgical (i.e., combined left and right
images) and postsurgical ASL data from both third
molar extractions (TME);1

ii. classification between left, compared to right-sided
postsurgical states;

iii. discrimination of the postsurgical from follow-up
pain-free scans acquired 2 weeks following the sec-
ond TME. We also examined the effects of using
data from multiple ASL scans. On each side we then
repeated the GPC analysis five times, progressively
reducing the number of ASL scans available to train
the classifier from six scans per session to one, per-
formed in reverse acquisition order. As the purpose
of this analysis was to determine the effect of the
number of scans acquired on classification accuracy,
the average of the remaining ASL images were used
in both the training and testing phases.

Classifier implementation

A detailed description of the GPC approach used in this
work has been provided elsewhere [Marquand et al., 2010;
Rasmussen et al., 2006]. In brief, a separate GPC model
was trained for each of the comparisons described above.
At the core of each of these models were a set of latent
function variables used to model the relationships between
the data points. To model the categorical binary class
labels, these variables were passed through a sigmoidal
(probit) likelihood function, which has the effect of con-
straining them to lie in the unit interval. A Gaussian pro-
cess prior with a linear covariance was then applied to the
latent function and the posterior predictive distribution
from this model was computed by applying the rules of
probability calculus and integrating out the latent varia-
bles. These operations cannot be performed in closed

form, so the expectation propagation algorithm was used
to approximate the posterior distribution. Expectation
propagation is well known to provide highly accurate esti-
mates of the true posterior distribution and is the method
of choice for GPC [Nickisch and Rasmussen, 2008]. Model
hyperparameters controlling the scaling and bias of the
latent function were optimized by maximising the model
evidence, a procedure also referred to as type-II maximum
likelihood (see [Marquand et al., 2010] for full details). All
GPC analyses were performed using the Probid software
toolbox (www.brainmap.co.uk), which relies on the GPML
toolbox for GPC inference (www.gaussianprocess.org/
gpml).

Cross-validation

All classifiers were embedded within a leave-one-out
cross-validation (LOOCV) framework to estimate the gen-
eralisation performance of each classifier for novel data
points. This was achieved by repeatedly repartitioning the
data into a test set (all scans from one subject) and a train-
ing set (all remaining scans) such that each subject was
excluded once. Predictions derived from the test data were
then used to compute the sensitivity and specificity of the
classifier. These were defined respectively as the propor-
tion of postsurgical or presurgical scans correctly classified
across all LOOCV cycles. The sensitivity and specificity
were then averaged to derive a balanced accuracy measure
quantifying the overall performance of each classifier.

Significance testing

A permutation test was used to assess whether each
classifier exceeded the accuracy that would be predicted
by chance (50%). To achieve this, the entire LOOCV proce-
dure was repeated 1,000 times after randomly permuting
the class labels in a manner accommodating the repeated-
measures experimental design (i.e., labels were permuted
at the subject level). The balanced accuracy was computed
for each permutation and a P-value for each classifier was
derived by computing the proportion of random permuta-
tions achieving higher balanced accuracy than the nonper-
muted classifier. To account for multiple comparisons in
analysis (iii), the P-values derived from the permutation
test were corrected using Holm’s Step-Down procedure
[Holm, 1979].

Visualising the classification pattern

For this application, it is desirable to know how blood
flow distribution differs between experimental classes, so a
mapping approach that enables direct visualization of the
relative class distribution was used. Under this approach,
the coefficient scores at each voxel represent the relative
difference between experimental classes in the context of
the entire pattern. They are constructed by projecting the
training data onto the vector that defines the direction of

1One subject was excluded from this analysis due to the presence of
an image artifact in ASL data acquired during S4.
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maximal difference between experimental classes. In other
words, this vector describes the mean of the posterior dis-
tribution in the input (i.e., voxel) space. Further details can
be found in [Marquand et al., 2010]. It is important to note
that these “g-maps” differ from “w” or weight-vector
maps more commonly reported in multivariate neuroi-
maging analyses [Mourao-Miranda et al., 2005] that illus-
trate the contribution of each brain region to the classifier
decision. While “g-maps” bear resemblance to conven-
tional univariate Z or T-statistical maps, it is important to
reiterate that they should be interpreted as a pattern,
rather than clusters of individual brain regions. As whole-
brain gray matter contributed to covariance estimates used
by the classifier, g-maps were not thresholded.

RESULTS

Behavioral Results

As demonstrated in our previous work, session-wise dif-
ferences were identified in VAS indices of perceived pain
(ANOVA: F 5 111.62, df 5 2,38, P< 0.0001) (Fig. 2a). Pair-
wise comparisons between sessions indicated that while
left and right postsurgical states each differed from the
average presurgical state (presurgical vs. postsurgical left-
Mean difference 5 52.41, P< 0.0001; presurgical vs. post-
surgical right-Mean difference 5 50.779, P< 0.0001), post-
surgical left and right sessions did not differ from one
another (Mean difference 5 1.633, P 5 1.00). There were no
effects of session on VAS indices of alertness (ANOVA:
F 5 1.10, df 5 2,38, P 5 0.343) (Fig. 2b).

GPC of Surgical Status

In the first analysis, we combined all ASL datasets from
presurgical and postsurgical scanning sessions on left and
right teeth to classify postsurgical from presurgical states.
GPC correctly discriminated between states with 94.73%
accuracy (classifier significance 5 P< 0.001).

Analysis (ii) assessed the performance of the GP classi-
fier at separating left and right postsurgical images from
each other. Classifier accuracy was 52.5%, just above
chance and not significantly predictive (P> 0.439).

In analysis (iii), we assessed classification accuracy
between ASL images acquired during the pain-free follow-
up session (S6) and postsurgical states for left and right
sides separately, to mimic the constraints of a cross-over
trial design. When TME was performed on the left side,
postsurgical ASL data could be discriminated from the
pain-free follow-up session (Fig. 1a) with 85% accuracy
(P< 0.001); and for the right side classification accuracy
was 93% (P< 0.001). Figure 3 illustrates the GPC predic-
tive probabilities for each individual subject in the cohort,
of being in either presurgical or postsurgical states.

We performed a stepwise removal of ASL images for
calculation of the GPC to assess the impact of the number
of images on GPC performance. In each iteration of this
analysis, the final ASL image, in reverse acquisition order,
was removed and the GPC retrained. Utilising two or
more ASL images to inform the classifier resulted in signif-
icant (P< 0.01) discrimination of the pain-free state at
follow-up from postsurgery states on both left and right
sides with an accuracy of 80% or greater. Using only the
first ASL image acquired did not result in significantly
accurate classification of either left or right-sided postsur-
gical state. We visualized the effects of systematic data
reduction on classification accuracy as a simple line seg-
ment plot (Fig. 4a), which illustrated the “elbow” of the
accuracy plot at the point on the x-axis when only two
ASL images were used to inform GP classification. The
additional ASL data did not substantially increase classifi-
cation accuracy. Receiver operating characteristic curves
provided in Figure 4b demonstrate the effects of acquiring
multiple ASL datasets on classification sensitivity and
specificity. Classification accuracies and significances for
all tests in analysis three are summarized in Table I. Fig-
ure 5 indicates the spatial pattern of the GPC, or “g-map”
that discriminates between images derived from

Figure 2.

VAS indices indicate significant between-session differences in perceived pain (a) but not in alert-

ness (b).
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postsurgical and pain-free follow-up states. Each row in
Figure 5 illustrates the effect of increasing the number of
images available to the classifier to discriminate between
postsurgical against pain-free states. The magnitude of the
GPC coefficient at each voxel provides a measure of the
relative difference in activation between classes in the con-
text of the entire pattern and the sign indicates (“favors”)
the class with greater mean rCBF. In common with our
previous report [Howard et al., 2011], the pattern of GPC
coefficients favoring classification of the postsurgical con-
dition (colored in blue) include the bilateral thalamus, pos-
terior and anterior insula, secondary somatosensory, and
anterior cingulate cortices; by contrast, the pattern favoring
classification of the no surgery condition (colored in red–
yellow) predominantly featured the occipital and posterior
parietal cortices. For brevity, we have illustrated only the
classifier for the left side; however, the spatial distribution
of GPC coefficients was similar on the right.

DISCUSSION

We have demonstrated accurate discrimination of on-
going postsurgical pain from pain-free states in the same

individuals. Classification of pain-states did not rely on
self-report: instead, multivariate pattern classification
(MPC) was performed on rCBF endpoints derived from
ASL-MRI. The technique is rapid, efficient, and ethical,
minimising the amount of time patients suffering pain
must endure the MRI experience. 80% classification accu-
racy or greater could be derived from as few as two ASL
scans, equivalent to a total scanning session of approxi-
mately 15 min. Classification performance was similar for
both left and right-sided postsurgical pain. Although the
multivariate pattern of brain regions underlying classifica-
tion was physiologically plausible, compared with previ-
ous MRI investigations [Wasan et al., 2011], including a
mass-univariate analysis of a subset of these data [Howard
et al., 2011], it is important to note that it is the multivari-
ate pattern in these data that is being used to perform clas-
sification [Rosa and Seymour, 2014]. Two key benefits
highlight the added value of pattern recognition over con-
ventional analysis methods: first, they enable predictions
regarding the condition of single individuals and the par-
ticular application of GPC provides accurate quantification
of the predictive confidence of each of those individual
predictions; second, the classifier results are generalizable,
in the sense that they can be used to predict pain-states in
individual new patients. This work adds considerably to
the field, by demonstrating its suitability to real-world,
clinically relevant functional indices of on-going pain. In
the discussion that follows we highlight the potential
impact of the ASL/GPC methodology as a focussed, per-
sonalized approach to developing much-needed new
therapies.

It is clear that there is no difficulty in discriminating the
presurgical from postsurgical states, either using neuroi-
maging or conventional self-reported endpoints. That said,
the TME model provides an ideal test-bed for the develop-
ment of ASL as a robust, ethical means of eliciting on-
going pain secondary to tissue trauma [Howard et al.,
2011; Kupers and Kehlet, 2006; Tracey and Johns, 2010]
and for testing the sensitivity and specificity of the GPC
technique to detect inescapable on-going pain. TME
remains the gold-standard model for making go/no-go
decisions in early analgesic development for many novel
pharmacological entities, acting as a bridge between acute
and persistent pain states [Dionne et al., 2005; Kupers and
Kehlet, 2006; Tracey and Johns, 2010]. While up to 80% of
individuals continue to experience considerable unwanted
postsurgical pain [Apfelbaum et al., 2003], arguably the
major challenge of developing new treatments lies with
persistent pain states [Borsook et al., 2011]. The difficulty
with these conditions is that it is still unclear whether neu-
roimaging markers directly predict the underlying clinical
pathology, or represent neuroplastic maladaptive altera-
tions in central nervous system functioning, likely sequelae
of living with long-term pain [May, 2008]. The application
of MPC methodology applied to rCBF indices of on-going
pain is equally suitable to both acute and persistent pain
states, but the feasibility of whether a “one-size fits all”

Figure 3.

Predictive probabilities for ASL images collected at rest and ASL

images collected postsurgically for both right and left extraction. The

x-axis indicates the probability that each scan was derived from the

presurgery condition. Red squares indicate predictions for images

collected postsurgery and are classified correctly if they have a pre-

dictive probability less than 0.5 (vertical black dashed line). The blue

diamonds indicate the perfusion images acquired from the presurgery

scanning session and are correctly classified if they have a predictive

probability greater than 0.5. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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classifier, that universally discriminates between all pain
states, will require considerable further investigation [Rosa
and Seymour, 2014].

Reports describing conventional mass-univariate
approaches to studying pain using ASL, provide encourag-
ing reading for future pain and therapeutic research [Rosa
and Seymour, 2014]. These studies have demonstrated
rCBF increases in patients with persistent pain secondary
to osteoarthritis (OA), compared to controls [Howard
et al., 2012], following augmentation of low back pain
[Wasan et al., 2011], postherpetic neuralgia [Liu et al.,
2013] and persistent trigeminal pain phenotypes [Youssef
et al., 2014] indicating the sensitivity of the ASL technique
to detect pain secondary to pathology. While this discus-
sion focuses on ASL, other investigations using resting-
state fMRI have also detected differences in connectivity
between brain regions in patients with persistent pain
[Baliki et al., 2006; Napadow et al., 2010], as well as using

rapid ASL-derived indices of functional connectivity [Log-
gia et al., 2012].

Potentially these clinical investigations may also be used
in concert with MPC techniques to provide diagnostic/
prognostic predictions but to the best of our knowledge
these studies have yet to be performed. Reports of MPC
analyses in the field of pain research have largely focussed
on conventional “evoked-response” BOLD fMRI, reporting
discrimination between experimentally induced painful
and nonpainful stimulation using laser, electric, and ther-
mal stimulations (reviewed in [Rosa and Seymour, 2014])
including predicting magnitude of subjective responses
[Marquand et al., 2010]. Recently the generalizability of
MPC analysis has been demonstrated [Wager et al., 2013]
in experimental pain studies; whereby a “neurological sig-
nature” of pain derived from one study and sample could
be used to predict acute experimental pain in other sam-
ples and experimental designs [Apkarian, 2013]. Early

Figure 4.

Accuracy, sensitivity, and specificity of the GP classifiers are demonstrated in (a) as a function of

the number of ASL volumes (per subject and session) used for training the classifier. Area under

the curves (AUC) is also shown with the respective ROC curves shown in (b) for classifiers

trained with 1, 2, 4, and 6 images to demonstrate the stability of the ROC curves. [Color figure

can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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reports describing MPC applied to structural MRI end-
points [Baliki et al., 2011; Ung et al., 2014] are also encour-
aging for diagnostic purposes but arguably represent the
downstream anatomical sequelae of persistent pain as
opposed to pain per se. Importantly, these reports did not
examine on-going, clinically relevant pain as investigated
here. On-going pain is often the endpoint utilized in testing
treatment efficacy [Tracey and Johns, 2010], leading us to
suggest that the ASL1ML methodology has potential utility
as an adjunct to established self-report measures in the pur-
suit of new treatments. We stress that individualized predic-
tion of treatment responses need not be limited to
pharmacotherapies. By contrast, these MPC techniques
should be equally applicable to predicting treatment
responses to physical and psychological therapies in patients
with persistent pain. We have previously argued that the
provision of a neuroimaging biomarker that simply reprodu-
ces the information of self-report, although neurobiologically
interesting, is less important in the context of clinical trials.
The MPC approach here is attempting to classify relative cat-

egories or states. The patterns, therefore, are not necessarily
informative about within-category states (e.g., how much
pain an individual was in during a specific ASL scan), so
provide information over and above pain ratings.

Outside the area of pain research, MPC techniques
applied to MRI endpoints have demonstrated sensitivity to

TABLE I. Categorical prediction accuracy for the classi-

fiers for postextraction pain states against presurgical

states using all scans (i)

N images True positive True negative Accuracy P-Values

(i) All Presurgery vs. Postsurgery
12 0.95 0.95 0.95 0.001

(ii) Follow-up vs. Postsurgery (Left)
1 0.6 0.6 0.6 0.17
2 0.95 0.75 0.85 0.001
3 0.8 0.7 0.75 0.01
4 0.8 0.8 0.8 0.001
5 0.85 0.8 0.825 0.001
6 0.85 0.85 0.85 0.001

(iii) Follow-up vs. Postsurgery (Right)
1 0.75 0.65 0.7 0.02
2 0.9 0.8 0.85 0.001
3 1 0.9 0.95 0.001
4 1 0.85 0.925 0.001
5 1 0.85 0.925 0.001
6 1 0.85 0.925 0.001

Classifier performance and significance is demonstrated as a func-
tion of the number of ASL images used per subject for the left (ii)
and right (iii) postsurgical versus follow-up scans.

Figure 5.

Representative GPC image patterns that separate left postsurgi-

cal vs. follow-up/no-surgery GP states. The top row provide

anatomical slice locations in MNI template space. Lower rows

illustrate the GP pattern discerned using 1 to 6 images to train

the classifier. (Blue-light blue colormap 5 negative GPC voxel-

wise coefficients favor postsurgical scans; Red–yellow color-

map 5 positive GPC voxelwise coefficients favor no-surgery

classification).
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discriminate between individuals with other chronic neu-
rological and psychiatric conditions, for example, depres-
sion, schizophrenia, Parkinson’s, and Alzheimer’s diseases
(reviewed in [Orru et al., 2012]). MPC analyses on ASL
data have also been used to discriminate accurately
between drug classes in healthy volunteers [Marquand
et al., 2012] and predict responses to drug treatments in
patients with depression [Gong et al., 2011]. These reports
indicate that the stage is set for the potential application of
these techniques as diagnostic and prognostic tools in per-
sistent pain states.

There are additional arenas in which the ASL/GPC tech-
nologies might be exploited, particularly where self-
reported pain is not possible. This is especially clear in
preclinical pain research. Behavioral indices of pain (e.g.,
tail flicking, paw withdrawal turning/biting etc.) have
been utilized, largely in the absence of an alternative
mechanism for measuring pain [Mogil and Crager, 2004].
The availability of ASL on dedicated preclinical imaging
systems makes translational research an enticing prospect.
The addition of predictive MPC analysis techniques, how-
ever, adds further scope. Ordinal regression and multiclass
pattern classification techniques are attractive propositions,
to examine discrimination of novel compounds against
those with of known efficacy (or proven lack of efficacy),
differing mechanisms of action or examination of dose-
response rates [Doyle et al., 2013; Marquand et al., 2012].
A more efficacious marker of pain in animals especially
would provide an earlier go/no-go to clinical experiments,
sparing both animals and later human trials. Outside the
domain of therapeutic development, the MPC methodol-
ogy provides the possible framework to make single-
subject predictions about whether someone is experiencing
pain. Hence, this technology may be beneficial for patients
unable to verbalise, for example, individuals with conscious-
ness disorders [Owen and Coleman, 2008] or children. This
may be particularly important in the case of the latter, where
experience of pain in early development has been shown to
have detrimental effects in later life [Liossi and Fitzgerald,
2012]. However, MPC techniques are not the panacea for
these complex problems. This data-driven approach to analy-
sis strongly depends on appropriate and rigorous study
design. Confounds, systemic or otherwise, introduced in a
study design cannot be recorded or tested using multivariate
classification methods in as flexible a fashion as in (e.g.,) gen-
eral linear models [Todd et al., 2013].

In summary, we have demonstrated how state of the art
MPC methods can be applied to ASL data to provide single-
subject predictions regarding the probability of an individ-
ual experiencing moderate to severe postoperative on-going
pain. The acquisition phase relies only on the consent of the
individual, is rapid and requires no other experimental
intervention. Importantly, the output of MPC can be gener-
alized to new subjects. These findings represent tentative,
but vital, steps toward the goals of personalized medicine in
health care and evaluation of novel therapeutics. These
methods must now be applied in two areas, examining indi-

viduals with persistent pain, and predicting prognostic out-
comes. We contend that neuroimaging may, finally, be
taking steps toward providing a complementary measure to
self-report for pain measurement.
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